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1. Phys. A: Math. Gen. 28 (1995) 4025-4041. Rinted in the UK 

Nonlinear Schrodinger operators and molecular structure 

E B Daviest 
Department of Mathematics, King’s College, S a d ,  London WC2R ZLS, UK 

Received 29 November 1994 

Abstract We minimize the eneFgy of a quantum Hamiltonian on the tensor product of two 
Hilbert spaces within the class of product states. This yields a nonlinear Schriidinger equation, 
whose ground state may bifurcate, producing symmeoy breaking. We describe a procedure 
for computing the ground states numerically, and prove that it converges. We argue that the 
nonhear Schriidinger equation has relevance to the issue of molecular mcture in quantum 
chemistry, and study an exactly soluble example in detail to support this claim. The paper 
concluder with a brief discussion of other approaches to molecular structure. 

1. Introduction 

It is well known that the Hilbert space associated with the composite system C obtained by 
combining two spatially separated quantum systems A and B is 

u c  := UA @ U8 

in an obvious notation. In principle, any vector of norm one i n ~ U c  describes a pure state 
of C. We shall call those of the form $c := $A 0 $B product states, and refer to other 
states as entangled, to a greater or lesser extent depending on how close they are to product 
states. 

Simplicity suggests that one should assume that the state of a composite system is a 
product state, in the absence of any contrary information. However, this is not always an 
appropriate choice. In particular, the EPR paradox rests upon the possibility of creating highly 
entangled states, whose properties under measurement are very different from corresponding 
results for product states. If A represents some collection of atoms or molecules interacting 
with each other, and B represents the external environment, then one is almost forced into 
the use of a product state ansatz, even though it is often implicit, in that the environment 
is not actually mentioned. Putting it the other way around, if entanglements between the 
system studied and the environment are important in some context, then one has to make 
the division between system and environment in a different manner than that originally 
considered. 

Now suppose that UA and ‘ X H ~  are the Hilbert spaces describing two interacting 
molecules. In this paper we shall examine the thesis that it is appropriate to use product 
states to investigate the combined system, at least as a first approximation. The obvious 
defence of this proposition is that if such an approximation is completely invalid, then 
the collection of atoms and electrons in C must be regarded as a single molecule rather 
than two separate ones. We shall see that the use of product states provides a bridge 
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between treating molecules as completely isolated non-interacting systems and handling the 
technically difficult problems associated with an exact quantum mechanical treatment. 

Our approach can also be described as imposing coarse graining or decoherence [O, 21 
between the two Hilbert spaces, or as localizing the particles associated with each of the 
two spaces. This is followed by the detailed analysis of the eigenstates of a nonlinear 
SchrMinger operator associated with this procedure. These eigenstates are of interest in 
their own right, but can also be used as a basis for expansion of the true eigenfunctions. We 
pursue these ideas partly theoretically, and partly through the numerical investigation of a 
simple model. A more philosophical discussion of our results is given in the final section. 

The product state ansatz leads to the study of a certain nonlinear Schrodinger equation. 
Ihis equation is associated with a non-convex energy functional which has been studied 
by a number of people since it was first introduced [Dl, D2, D3, GM, P1, P2, P31. The 
number of different derivations confirms the significance of the energy functional as a way 
of taking some account of external infiuences on an open quantum system. We make some 
further progress in the general theory of the functional, and illustrate it by solving a model 
problem describing two interacting molecules. We show, at least in the model, that use of 
the nonlinear equation yields remarkably good numerical results, considering the simplicity 
of the method. 

It has been pointed out in earlier papers on this energy functional that its properties 
throw some light on the problems of molecular structure and optical activity. The first 
discussion of molecular structure was given by Hund, who explained why optically active 
states of certain molecules might be very long lived [HI. The problem was revived by 
Woolley [WI, WZ], and the current issue is to explain why optically active states of certain 
molecules seem to be positively preferred to the true quantum mechanical ground state. In 
the author’s view the best current explanation uses the instability of the true ground states of 
these molecules under small external perturbations. Various types of external pemrbations 
have been considered in this context and all lead to rather similar conclusions [CJ, JMS, 
P1, P2, P3]. 

Wightman and Glance WG] have summarized one group of papers on molecular 
structure by concentrating on the idea of superselection rules which put different optical 
isomers into distinct superselection sectors. These superselection sectors only exist for 
systems with an infinite number of degrees of freedom, but statistical mechanics and 
quantum field theory provide standard tools for formulating such problems in precise terms. 
A difficulty with this approach is that it depends upon the solution of substantial technical 
problems [Al, SI even for highly simplified models. It is not clear whether more realistic 
models‘ exhibit the phase transitions which the approach requires WG]. 

The behaviour of a large assembly of molecules can be studied at four levels of 
approximation. The simplest is to consider a single molecule, completely ignoring the 
influence of its neighbours. A better procedure is to model the environment of one of the 
molecules by a classical polarizing medium or by a random external electric field, and to 
compute the effects of the additional terms. The thud approximation considers all of the 
molecules quantum mechanically, but involves minimizing the energy within the class of 
product states. The final approach is the very difficult problem of finding the true ground- 
state energy for the full interaction Hamiltonian of the multi-particle system. 

We shall study the thiid of these models. Our results indicate. the existence of symmetsy- 
breaking metastable states at this level of approximation. Although these results are artifacts 
of the method, it is interesting that they are so closely related to one’s intuition about the 
behaviour of molecules. We believe that they are likely to be indications of the existence 
of phase transitions and superselection NI= for the full statistical mechanical models. 

. 
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In section 4 of the paper we consider a highly idealized model of a molecule consisting 
of a rotating covalent bond joining two groups. each of which has four possible orientations 
relative to the bond. We obtain expressions for the exact ground state, the lowest energy 
product states, a symmetrized approximate ground state and their associated energies. The 
striking numerical accuracy of our method,provides support for the value of the method in 
other more realistic probkms in which the exact solution is not readily computed. 

2. The nonlinear energy functional 

Let X be a periodic lattice in RN, and let H denote the Hilbert space describing a collection 
of one or more atoms or molecules with Hamiltonian H. We put a copy of ‘H at each 
site x E X, and let K := KO + KI denote the total self-energy of the system of molecules 
in the Hilbert space IC, := H x .  Here KO := EXEX Hx, and K, is the interaction 
energy of the molecules. We assume that the interaction is of dipole type, that is 

where Ax,, are copies in ‘Hx of bounded self-adjoint operators A,  on H, and A is the set 
of nearest neighbour edges in the lattice X. More complicated edge dependence of the 
interactions can be accommodated within our theory. 

We comment that the simplest case in which X consists of just two points, is still of 
interest. It describes the interaction of two atoms or molecules, and exhibits the symmetry- 
breaking effect just as the statistical mechanical model does. 

The ground-state energy density of the system is by definition the quantity 

Ex := inf{(Kf, f)/ lXl : f E K and l l f l l  = I} 

where 1x1 is the number of sites in X. If we minimize over product states of the form 
f := @ X E ~ $ x ,  where $z are all copies of a single unit vector $ E ‘H, then we obtain the 
inequality 

E x  < E h  < inf((H$, 4) : Q E ‘H and I IQI I= 1) 

where. 

(1) E A .- inf(&($) : $ E ‘H and 1 1 ~ 1 1  = 1) 

and 

where A is the number of edges per lattice site. 
We emphasize that sites in X should not always be identified with individual atoms or 

molecules. We argue in the last section of the paper that one should group atoms together 
into clusters whose diameter is a certain coherence length determined by the environment. 
The justification of the above product ansatz within the context of equilibrium statistical 
mechanics is discussed at length in the last section. 
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We have already mentioned that the functional (2) above has been studied by a number 
of authors with different justifications for its use. The above derivation is, however, new 
and has the feature of not introducing any undetermined parameters. The technical content 
of the present paper consists of, an analysis of the critical points of the functional, and 
procedures for determining its local minima. We refer to [D3] for related results using 
group symmetries to simplify the analysis, and to [D2] for the study of the analogous 
formula at positive temperatures. We leave the proof of the following easy result to the 
reader. 

Lemma 1. The infimum in (1) is actually attained for at least one unit vector 4 E 'H. The 
quantity ,& is a concave decreasing function of the parameter A, 

3. Analysis of critical points 

Throughout this section we consider the functional (2) under the assumptions that 1-I is finite- 
dimensional, that H and A, are all self-adjoint operators and that A > 0. We understand 
that E is always applied to states, that is to f E 7.1 with unit norm, where two such vectors 
are identified if they differ only by a phase factor. 

Lemma 2. The critical points f of & are precisely those states f which satisfy the 
eigenvalue equation 

for some p E R, where 

a, := M,f, f )  . 

A state f is a critical point if Proof. 

where 

f + t g  
Ilf + tgll 

f (t) := (5) 

and g E 7-1 is any vector satisfying (f, g) = 0. On performing the necessary differentiations, 
we find that this is equivalent to 

for all such g. This, in turn, is equivalent to (3). 0 
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Lemma 3. Let f be a critical point of E satisfying (3) and (4). If we define 

n 
ff: = H - 2 A E a r A , - p  

A, : = A ,  -curl 
r= l  

for 1 < r < n, then 

for all 1 < r < n, and 

0 

E&) = @gig, g) - A E(&g, g)' + c 
,=I 

for all states g, where 

C :=A &,z+Y. 
r=I 

We omit the proof, which involves only straightforward algebra. We call the above 
expressions the normalized representation of E relative to the critical point f. We say that 
a critical point f of E is a non-degenerate local minimum if 

for all f ( t )  of the form (4) and all g E 'F1 such that (f, g) = 0. 

Theorem 4. Suppose that the state f satisfies 

Hf = 0 ( A J ,  f) = 0 

for all 1 < r < n. Then f is a non-degenerate local minimum of 

if the following two conditions hold 

(i) H is strictly positive on t := 

(ii) The n x n mamx 

K,, := (H-'A,f, A,f) 

satisfies 4A.11Kll < 1. 

Note. These conditions are related to those of Grecchi and Martinez [GM], but are perhaps 
more transparent. 



n 

C := C I A r f ) ( A r f l .  
r=1 

If we put L := {g E 'E : (g, f) = 01, then it is easy to see that (H - 4X)(L) 5 L. 
Moreover c > 0 for all non-zero g E L if the restriction of H - 4hC to L is a strictly 
positive operator. 

The remainder of the proof involves showing that 

( ( H  - 4 W g ,  g) > 0 (9) 
for all non-zero g E L if and only if the conditions (i) and (ii) of the theorem hold. The 
condition (i) is an easy consequence of (9) and the inequality C 2 0, and will be assumed 
below.The condition (9) may be rewritten in the form 

A'A = H-'/'CH-'/' < 81 (10) 
on L, for some .9 < 1/(4h), where A : L --f C" is defined by 

(Ag), := (H-'/'g, A,f) . 
A well hown result states that (IO) is equivalent to the inequality A A' < 0 I on Cn. Since 
this operator has the matrix K, we see that the condition is equivalent to (ii). 

Theorem 5. Suppose that the real-valued state f satisfies 

Hf = 0 (Arf, f) = 0 

for all 1 < r < n, and that H, A, are all real-symmetric matrices. Then f is a non- 
degenerate local minimum of 

n 

E(+) := (H+, 4) - A C ( A , + .  +)' 
,=I 

if and only if the conditions (i) and (ii) of theorem 4 are both satisfied. 
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We follow the notation of the last proof. If f is a non-degenerate local minimum Proof. 
of E and g E C is real then the proof of (8) yields 

= ((H - 4AC)g, g ) .  

Since H - 4AC is a real-symmetric matrix, it follows that if c > 0 for all non-zero real 
g E 1: then H - 4AC is strictly positive; conversely if H - 4AC is strictly positive then 
c > 0 for all non-zero complex g E C by the argument of theorem 4. The remainder of the 
proof follows theorem 4. 

If this type of nonlinear Scbrodinger equation is to be computationally useful, it is 
essential to develop procedures for finding the local minima of E. We next investigate one 
iterative scheme for doing this. A short discussion of this scheme is given after corollary 8. 
Starting from a sequence ab) := (af"', . . . ,aim)), let f ,  be the ground state of the operator 

with corresponding eigenvalue pm,  and put 

c@+') := (A,  f m .  f , )  

for 1 < r < n. The precise meaning of the following lemma will emerge during its proof. 
It is of theoretical rather than computational value, since it depends upon the knowledge of 
the limit state f .  

Lemma 6. If f is a critical point of E, then the issue of convergence of a('") to (Y may be 
solved in the normalized representation of E relative to f .  

Proof. Suppose that H, A, A,  and the limit state f are known and that f , ,  E('") and p, 
satisfy 

" 
Hfm -U C @ " A r f m  = Pmfm (A i fm,  f m )  = ~ r ,  (m+l) .  

r=1 

A direct substitution of (6) and (7) establishes that 

n 
f ,  - 2hZci;"')& f m  = Pm f m  

,=I 

where E:'") := a!") - a, satisfy 

@+I) = (A, f m ,  fm) . ' 

Thus f m ,  &(,) and Pm satisfy the 'same' recurrence.relations as before but with respect to 
the renormalized operators. The convergence of a@" to (Y is equivalent to the convergence 
of&") to 0 asm + W. 
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Theorem 7. Suppose that the state f satisfies 

H f  = 0 (A,f, f) = 0 

for all 1 < r < n, and that the following two conditions hold 

(i) H is strictly positive on 1: := {f)l. 

(ii) The n x n matrix 

4, :=Re{ (H-'Arf, A&} 

satisfies 4AllMll < 1. Suppose also that fm,  E("') and pm satisfy the above recurrence 
relations. Then limm+- dm) = 0 if 

Proof. Condition (i) implies that 0 is an eigenvalue of multiplicity one of H with 
eigenvector f .  Analytic perturbation theory implies that if ci E R" is sufficiently small 
then the smallest eigenvalue p(a) of H - U a  A is of multiplicity one. Moreover, @(a) 
and the corresponding eigenvector f ( a )  satisfy 

is sufficiently small. 

!&) = ' Y + O(laIZ) f (a) = f + 01 . g + O(l.IZ) 

where y E R" and (g, f) = 0. Therefore 

( H  - 2 h .  A)(f +ci .g) = 01' Y ( f  + C f .  g) + O(laIZ) 

and 

Hgr - 2 W f  = Y r f  

for 1 < r < n. Taking inner products with f yields yr = 0, and hence 

g, = 2 H - I  A, f 

If we now define the nonlinear map T : R" -+ R" by 

(Tau), := (Arf (or), f@)) 

then 

(Tor), = (A,(f + . g). (f + a. g))  + o(l.lz) 
= 2Re(A,f, a . g) + 0(lal2) 
= 4AMLY + O(lciI2) 

where M is defined by (11). If 4AlIMII -z c < 1 then [Tal 6 clcil provided loll is small 
enough. Therefore a(") := T"-'a") converges to zero provided dl) is small enough. 

Corollary 8. Let f be a real local minimum of a functional E defined using real-symmetric 
matrices H and A, and real constants A > 0 and a,. If f m ,  and pm satisfy the above 
recurrence relations, then 1imm-,- U('"! = ol if Id1) - is sufficiently small. 
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Proof. We use lemma 6 to transfer to the normalized case, noting that this preserves the 
reality of the various matrices. We then use theorem 5 to prove the hypotheses of theorem I. 

The above corollary shows that each local minimum a E R" has a domain of attraction 
under the above recurrence relation. This is an open set which contains a neighbourhood 
of the point (Y itself. On the basis of limited numerical experiments, we conjecture that 
the union of the domains of attaction is dense in R". Numerically this means that starting 
from essentially any initial point LY E R", repetition of the iterative scheme always leads to 
a local minimum. Some general results comparing the rate of convergence of this method 
with that of the steepest descent method applied to E would be interesting. 

We next suppose that G is a finite group of symmetries of the nonlinear functional E 
in the following sense. We assume that G has a unitary representation U on the Hilbert 
space H. and that H commutes with U ( g )  for all g E G. We relabel the subscript r of the 
operators A, by points from a finite set X and suppose that G acts as a permutation group 
on I. We assume that 

for all x E X and all g E G. The operator subspace lin(A, : x E X) is then invariant under 
the action of G ,  and we finally assume that the decomposition of the representation of G 
on this space into irreducibles does not contain the identity'representation. This is weaker 
than the assumption of [D3] that the representation of G on lin[A, : x E X) is irreducible 
and different from the identity representation. 

The simplest case of the above assumptions happens when there is a single spatial 
symmetry S of order two acting on H, for which SH = US and A,S = -SA, for a l l  r .  

It is known from a variety of examples that the mimimum value of E(@) need not be 
achieved at a unique point, and that the individual minima may break the group symmetries 
described above. This phenomenon is relevant to optical &d structural isomerism. The 
following theorem is a slight improvement upon Theorem 6 of [D3], and is included for 
completeness. 

Theorem 9. Under the above hypotheses, every G-invariant eigenfunction of H is a critical 
point of the functional E. Suppose that H 2 0 and that there exists Q E 'H with ]lQll = 1 
and E(@)  < 0. Then the minimum value of E is achieved at more than one point and G 
acts non-trivially on the set of all minima. In other words the global minima of E break 
the group symmetry. 

Proof. 
for all g E G we have 

Let S := {@ E 7-1 : 11$]1 = I), and let Q E S be G-invariant in the weak sense that 

where O(g) E R. Then the linear map T : f. = lin(A, : x E X] + C defined by 

T(B) := W,Q) 

satisfies 
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for all B E L. Therefore Lo := { B  E L  : T(B) = 0) is G-invariant, and the action of G on 
L, := 1: n .Lk is trivial. Our assumption on this action implies that L, = 0, and hence that 
.CO = E .  In other words ( A x @ ,  4) = 0 for all x E X. 

If $ is also an eigenvector of H then it follows from lemma 2 that it is a critical point 
of E. If @ is a critical point of E in addition to (12) then it follows from lemma 2 that it 
is an eigenfunction of H .  Since H > 0, we deduce that E(@) 0, so E does not take its 
minimum value at 4. 

4. A soluble model 

Application of the above computational scheme to problems in quantum chemistry will 
inevitably involve a great amount of numerical work. The purpose of this section is to 
describe a simple model exhibiting the main phenomena which can occur. We shall see that 
the numerical results obtained by our method are remarkably good considering its simplicity. 

Although the derivation of the non-convex energy functional in section 2 was phrased 
in terms of a lattice of sites in RN, we commented that it could also be applied to a pair of 
identical systems. We make this choice in our model, in order that the exact eigenvalues 
and their nonlinear approximations can be calculated in closed form for comparison. 

If we put h = p below, then the model can be regarded as a simplified description 
of a single molecule consisting of two parts joined by a single rotating covalent bond. 
The simplest molecule of this type, namely ethane, could be modelled very crudely by the 
Hilbert space C3 @ C3, one copy of C3 for each end of the molecule. 

The molecule methyl hydrazine has more features in common with the model we 
consider, although the two ends are not identical. Lattimer and Harmony [LH] have 
computed the potential energy function associated with the different configurations of the 
molecule obtained by rotating around the N-N bond. This potential has two maxima and two 
minima as a function of the angle, and these conf ip t ions  are at angles of approximately 
90" to each other. A possible Hilbert space for a very approximate study of this molecule 
is therefore @ C4. 

In our highly simplified model we assume that 7i := C4 and construct a Hamiltonian 
using the mahices 

2 -1 0 

-1 2 
-1 0 -1 2 

H : =  ( i1 -1  

1 0  0 0 0 0 0  0 

0 0 - 1 0  
0 0  0 0 0 0 0 - 1  

A : = (  0 0  0 0 ) B:=(' 0 0 0  O )  0 ' 

We consider the anisotropic Schrodinger operator on 'H @ 7.1 defined by 

K := i ( ~  B I +  1 8  H ) ~ - A A  @ A - P B  8 B 

where A > 0 and p > 0. The first term on the RHS is a discrete kinetic energy operator, 
and the other two terms define a potential with four local minima. 
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If we put 

E($) := (K$ '8 $. 6 @ 4) 

where $ E 7-l and ll$ll = 1 then 

E ( @ )  = (H$.  $) - A(A$, 9)2 - LL(B$. d 2 .  

The operator K is obviously invariant with respect to the interchange of the two copies of 
1.1. It is also invariant with respect to the rotational symmetry R '8 R where 

0 1 0 0  
R:=(' 0 0 0 1  O) 

1 0 0 0  

/o  1 0 o\ 
0 0 1 0  

1 0 0 0  
0 0 1J 

provided A = y. This last property is inherited by the functional E. However, even in the 
case A # y there are two commuting reflection symmetries, each of order two, induced by 

0 0 1 0  1 0 0 0  

S:=(O 1 0 0 0  1 0 0 )  0 0 1 0  0 0 I )  
0 0 0 1  0 1 0 0  

The inlhence of these symmetries on the calculations will be kept in the background, but 
has been essential in finding the various eigenvectors. We will constantly refer below to 
expansions in terms of the orthonormal basis 

consisting of simultaneous eigenvectors of S and T. 

Lemma 10. 
with zero energy, if and only if A < 1 and y <'I .  

Proof. Direct computations establish the identities Hel = 0, He2 = 2e2, He3 = Ze3 
and He4 = 4e4. If we put AI  := A'/*A and A2 := y*/'B then Ale,  = &A/2)e2 and 
A2el = &y/2)e3. We may now apply the results of theorems 4 &d 5. Since 

The unit vector el is a non-degenerate local minimum of the functional E,  

it follows that K < 81 for some B < 114 if and only if A c 1 and y c 1. 

Lemma 11. If h 6 1 and y < 1 then el is a global minimum of the functional E .  
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Prooj Since €(el) = 0, we need toprove that E(f) > Ofor all f E C4 such that l l f l l  = 1, 
provided A 6 1 and p Q 1. This is equivalent to the inequality 

(Af, f)' + (M f)' < llfll2(Hf9 f) 
being valid for all f E C4. Since the map f + I f 1  reduces the RHS while leaving the LHS 
unchanged, it is sufficient to heat the case where 0 6 fr E R for all 1 6 r 6 4. We expand 
f in the form f := ael + Be2 + ye3 + 6e4, where 01, B, y. 6 E R. Direct computations 
establish that 

(Hf, f) = zg2 + 2y2 + 4 2  
(AY, f) = - h p  (a + 8) 
(Bf, f) = AY (01 - 8). 

Our task is therefore to establish that 

ZB*(or + 6)2 + 2y2(ar - 812 < (282 + 2yz + 482)(2 + 82 + y2 + 6 2 )  

for all real variables 01, p, y and 6. Now assume that a6 2 0. me case 016 < 0 may 
be handled in a similar way.) By expanding and simplifying both sides we see that it is 
sufficient to prove that 

8 4  + 2(SZ - aS)82 + B Z ( O 1 ~  3.82) 2 0. 

(62 - a6)Z < 262(aZ + 82) 

for all 01, p.6 E R. Regarding this as a quadratic inequality in p z ,  it is certainly valid if 

and the proof of this is elementary. 

Lemma 12. Let h z 1 and let t be the positive solution of h2 = 1 + t2. Then the unit 
vectors 

1 hq=r 1 ga := - - - 
2h' 2h * 5) 

are critical points of the functional E, with enera 

(13) 
1 
A E@+) = 2 -A - -. 

Proof: An application of the symmetq S establishes that it is sufficient to heat the vector 
g := g+. It is easy to check from their definitions that llgll = 1, (Ag,g) = t / h  and 
( B g ,  g) = 0. Putting 

L : = H - 2A(Ag, g )A  - 2p(Bg ,  g ) B  

= H - 2 t A  

it follows by a direct calculation that 

Lg = 2(1 -h)g. 
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Lemma 2 now implies that g is a critical point of E. Moreover, 

E(g) = (Lg ,  g) +A(&. 8)’ 

= 2(1- 1) + i ( t / I ) ’  

1 
I 

= 2 - I - - .  

If I > p > 1 then there is another pair of critical points, given by 

where p2 := 1 + uz. These have energies 

Numerical explorations give strong grounds for believing that these four points are local 
minima of E, that no other local minima exist, and that g* are the global minima, but we 
have not done the calculations needed to prove this. 

The two pairs of energies obtained above can be compared with the four smallest 
eigenvalues of the operator K. We label these {E,):==, in increasing order. Because of the 
group symmetries present, they can probably all be evaluated in closed form, although they 
are the eigenvalues of a 16 x 16 matrix depending upon two parameters. We have however 
only determined E2 and ,733. Representing the eigenvectors q& E C4 @ C4 by 4 x 4 matrices, 
the statements of the following lemma may be checked by direct computations. 

Lemma 13. If 0 < p < I and (Y := ( A I z  + 4) - h)/4 then 

/ I  01 0 a \  

0 -cd O -a -1 -a O I  A:= I 
\01 0 -a 0 / 

is an eigenvector of K with eigenvalue 

E2 :=2- +I  - f J I z  -4-4). 

Moreover, if f i  := (&’ + 4) - p)/4 then 

is an eigenvector of K with eigenvalue 
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Figure 1. 

The following diagram displays the bottom four eigenvalues of K for A := 4 and various 
values of p by full curves, and the approximate expressions (13) and (14) by broken curves. 

We see that the agreement between the true eigenvalues and those computed by the 
product ansatz is very good, except when h and p are very close. Here the quantum 
tunnelling between the four different wells of the potential V := -hA@A -@EBB becomes 
important. We can, however, carry out a second stage of our procedure, described as use of 
the generator coordinate method in W31, in order to improve its accuracy. One of the main 
uses of the generator coordinate method is to restore symmetries which have been removed 
by some other procedure, and we shall see that taking an appropriate nonlinear combination 
of the states g+ and h* enables us to approximate the true ground state even better. We 
mention that Amann [A21 has recently made similar use of the generator coordinate method 
for a different model. 

To illustrate this, we suppose that A. = p 1 and consider 

f := g+ @g+ +g- @g- 3- h+ @ h+ 3- h- @ h- 

as an approximation to the true ground state f := $1 of K .  In our approach this coherent 
superposition of the product states is unstable with respect to small external perturbations, 
just as the true ground state is. The simple forms of f and f below can be explained by 
the large symmetry group of the model, but we first observed it in numerical calculations. 

Lemma 14. The unnormalized vector f is of the form 

A 2 A 1 A  

1 A A‘ 
and has energy 

- (Kf, f) 2(A - 1)’ - A(h2 - 1) E:=-= 
(f .f)2 A2 + 1 
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The true unnormalized ground state f is of the form 

where U := 4 + $JAZ +4). It has energy 

E := 2 - &Az +4) 

ProoJ The statements about f are obtained by direct computations. Another direct 
computation shows that a vector f E C4 0 I? of the form (15) is an eigenvector of the full 
Hamiltonian K with the stated energy E if U has the stated value. Now the coefficients of 
f are all positive, and K is a discrete Schrodinger operator. Therefore f is the ground-state 
eigenvector of K ,  by the arguments of [D4, section 1.41. 

We can compare the approximate and exact ground-state energies I? and f by two 
methods. For large A we have the two asymptotic expansions 

2 2  
A b3 

E = - A + 2 - - + - + 0  

which correspond extremely closely. However, even for moderate values of A the two 
expressions are remarkabIy similar, as the following table indicates. 

5. Discussion 

There are several phenomena which go under the general heading of ‘the molecular structure 
problem’ in quantum chemistry, and we have chosen to concentrate on one which involves 
the breaking of a rotational symmetry group. The task is to find a procedure for Consmcting 
localized states which break the symmetry group in a manner which corresponds to the 
intuitions of chemists, and which can be justified in some theoretical manner. We have 
achieved the first goal by imposing a product state ansatz, and have shown in a soluble 

Table 1. 

Ground-state energy for A = p 

A Exact ADDIOX. 

1.0 -0.2361 -0.0000 
1.2 -0.3324 -0.1836 
1.4 -0.4413 -0.3459 
1.6 -0.5612 -0.4989 
1.8 -0.6907 -0.6491 
2.0 -0.8284 -0.8000 
3.0 -1.6056 -1.6WO 
4.0 -2.472I -2.4706 
5.0 -3.3852 -3.3846 



4040 E B Davies 

model that it has the expected effect. It is our belief that similar behaviour occurs in more 
realistic situations. 

The more difficult task is to justify the product state ansatz, and here we mention three 
approaches. The first invokes the process of measurement and the associated collapse of 
the wavepacket. If one is primarily interested in the behaviour of obserbed molecules, then 
one can refer to the fact that the act of observation destroys phase correlations. It has 
been maintained in this context that the act of observation confers objective reality upon 
the molecules, and that an objecthubsystem can only be regarded as having context-free 
individuality if it is in a pure state W31. 

The second idea is to refer to the decoherence effect of the environment [0, Z], or more 
specifically to random external influences such as electric or even gravitational fields. It can 
be shown in certain models for which the energy gap between the smallest two eigenvalues 
is extremely small [CJ, GM, JMS], that these introduce random phases into the symmetric 
zero-field eigenstates, and that localized symmetry-breaking states emerge after taking the 
external fields into account. The instability of the exact solutions of the Schrodinger equation 
under tiny perturbations has some similarities with well known effects in classical chaotic 
dynamics. A recent model of the effect of random fields using an evolution equation for 
mixed states [B] exhibits decoherence on a very short timescale, but also a further mixing 
on a much retarded timescale associated with the quantum Zen0 effect. 

The final proposal is that one can consider the tensor product ansatz as a mathematical 
device for constructing eigenstates in two stages, the second stage being the use of the 
generator coordinate method. In this view chemists choose to invoke only the first stage 
of the procedure because it leads to results which have simple classical interpretations, and 
which me computationally satisfactory for many purposes. 

The author does not consider it his role as a mathematician to arbitrate between these 
justifications. It is sufficient that several different physically based arguments lead to the 
same conclusion, and that the study of tensor product states is mathematically sufficiently 
precise for detailed investigation. 

The need for a justification of our approach is more acute in the context of 
equilibrium statistical mechanics, because the conventional approach via Gibbs states and the 
thermodynamic limit is very well established. The conventional attitude to the tensor product 
m a t z  is presumably that it is an approximation to the correct conventional procedure, and 
may or may not be a good one, depending upon the model. We argue that this is an 
oversimplification of a rather complex situation. We will only discuss the zero-temperature 
problem, that is the properties of ground states. 

A ‘conventional infinite volume statistical mechanical model is an idealization of a 
physical problem, in which interactions with particles such as photons and effects of 
the environment including gravitation are disregarded. This is achieved by removing 
entanglements. that is by assuming a tensor product state for the combination of infinite 
volume model and the environment. This is normally done implicitly, by setting the 
interactions between the system and environment equal to zero, which ignores the effect 
of the interaction energy. The conventional procedure therefore has a restricted domain of 
validity. If the ground state is unique and there is a positive energy gap as in [AKLT, FMN], 
then the use of the conventional model may be justified. If, however, the conventionally 
calculated ground state has no energy gap, we would argue that the conventional model has 
no more justification than the use of a tensor product ansatz which explicitly recognizes the 
decoherence effects of the environment. 

We would emphasize that the use of a tensor product ansatz involves estimating a 
coherence length associated with the environmental effects. Once this has been fixed, one 
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groups particles together into clusters, which become the sites of the lattice X of section 2. 
These clusters should have diameter at least equal to the coherence length, but the model 
does not become better by allowing the cluster size to diverge to infinity. The introduction of 
an extra parameter, the coherence length, may or may not be welcomed, but its mathematical 
effect can only be judged by detailed calculations in particular models. 
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